Level order traversal/ Breadth First (BFS) traversal of binary search tree
- Level order traversal is also referred as Breadth First (BFS)/ Width First tree traversals.
- In simple terms every node of a level is visited before going to the lower level.
Traversal of the above binary tree in level order produces the following result.
Traversal in level order is usually done with assitance of queue with the following steps:
30 10 40 20 50
- Add the root node to the queue and then repeat the following if queue is not empty.
- Dequeue a node from the front of queue and visit it.
- Enqueue the node's children from left to right.
Level order traversal of binary search tree implementation
#include <iostream> #include <queue> using namespace std; // Node class class Node { int key; Node* left; Node* right; public: Node() { key=-1; left=NULL; right=NULL; }; void setKey(int aKey) { key = aKey; }; void setLeft(Node* aLeft) { left = aLeft; }; void setRight(Node* aRight) { right = aRight; }; int Key() { return key; }; Node* Left() { return left; }; Node* Right() { return right; }; }; // Tree class class Tree { Node* root; public: Tree(); ~Tree(); Node* Root() { return root; }; void addNode(int key); void levelOrder(Node* n); private: void addNode(int key, Node* leaf); void freeNode(Node* leaf); }; // Constructor Tree::Tree() { root = NULL; } // Destructor Tree::~Tree() { freeNode(root); } // Free the node void Tree::freeNode(Node* leaf) { if ( leaf != NULL ) { freeNode(leaf->Left()); freeNode(leaf->Right()); delete leaf; } } // Add a node void Tree::addNode(int key) { // No elements. Add the root if ( root == NULL ) { cout << "add root node ... " << key << endl; Node* n = new Node(); n->setKey(key); root = n; } else { cout << "add other node ... " << key << endl; addNode(key, root); } } // Add a node (private) void Tree::addNode(int key, Node* leaf) { if ( key <= leaf->Key() ) { if ( leaf->Left() != NULL ) addNode(key, leaf->Left()); else { Node* n = new Node(); n->setKey(key); leaf->setLeft(n); } } else { if ( leaf->Right() != NULL ) addNode(key, leaf->Right()); else { Node* n = new Node(); n->setKey(key); leaf->setRight(n); } } } // Print the tree level-order assisted by queue void Tree::levelOrder(Node* n) { // Create a queue queue<Node*> q; // Push the root q.push(n); while ( ! q.empty() ) { // Dequeue a node from front Node* v = q.front(); cout << v->Key() << " "; // Enqueue the left children if ( v->Left() != NULL ) q.push(v->Left()); // Enqueue the right children if ( v->Right() != NULL ) q.push(v->Right()); // Pop the visited node q.pop(); } } // Test main program int main() { Tree* tree = new Tree(); tree->addNode(30); tree->addNode(10); tree->addNode(20); tree->addNode(40); tree->addNode(50); cout << "Level order traversal" << endl; tree->levelOrder(tree->Root()); cout << endl; delete tree; return 0; }OUTPUT:-
add root node ... 30 add other node ... 10 add other node ... 20 add other node ... 40 add other node ... 50 Level order traversal 30 10 40 20 50
0 comments:
Post a Comment